If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+15y-495=0
a = 2; b = 15; c = -495;
Δ = b2-4ac
Δ = 152-4·2·(-495)
Δ = 4185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4185}=\sqrt{9*465}=\sqrt{9}*\sqrt{465}=3\sqrt{465}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{465}}{2*2}=\frac{-15-3\sqrt{465}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{465}}{2*2}=\frac{-15+3\sqrt{465}}{4} $
| 6x-17x+6=23x+17x+42 | | 10/7+1/4t=4 | | 75+m=175 | | -7(-8-5a)=-12+a | | 5x+16=6x-20 | | 7x+8=49x-8 | | x=189/2 | | 75=16t | | 7+8x=4(2x+2) | | 0.1-0.01(x+3)=-0.01(1-x) | | -7(m-1)=-17-4m | | (1/3)x+5=(-2/3)x-1 | | 9(x+7)=9(x-7) | | 2(×+4)+3=6+3x | | 18=8+10(x-2) | | 1/4(8x-2)+2x=4x+3/4 | | -30+6n=-n+6(3n+6 | | -9+2x+x+2=180 | | 20=4(x+5) | | 4^(x-1)+2^(x+2)=48 | | 2x^2+9x+396=0 | | 1/3x+5=2/3x-1 | | 1/2(8x-12)=2x-1+x | | 25x-33=6(3x-5)+7x-3 | | 100x+270=40x+360 | | 1+4m-6m=-9 | | 6x-8=-×-8 | | 4.6+8.3(x)=x+97.5 | | 3y=y+2y | | 2((t-1)^(1/2))=(3t-1)^(1/2) | | 3+1/4(x-4)=2/5(2+3x) | | 40=11-3(5-2w) |